
A Computationally Efficient Parallel Kernel
Regression for Image Reconstruction

V.Sairam∗, M.Srinivasa Rao∗, G.Dada Khalandhar∗, L.Srikanth, P.K.Baruah, R.R.Sarma
Sri Sathya Sai Institute of Higher Learning, Prashanthi Nilayam, India.

{v.sairam1,msrini.svn,dadakhalandhar, srikanthcl}@gmail.com, {pkbaruah,rraghunathasarma}@sssihl.edu.in

Abstract—Image reconstruction is a method by which
the underlying images, hidden in blurry and noisy data,
can be retrieved. This is used in applications such as
computer tomography (CT), magnetic resonance and radio
astronomy. In recent times, a non-parametric adaptive
regression method called steering kernel regression was
proposed and proved to be effective. This method involves
computation of local gradient at each pixel thereby making
it computationally intensive. The time consuming parts
of the steering kernel regression can be optimized by
off-loading them onto GPUs and multi-core processors.
The parallel implementation of this algorithm improved
the performance of image processing applications such
as denoising, deblocking and upscaling. It has given an
average speedup factor of 6 on multi-core and 21 on a
GPU.

Index Terms—Kernel Regression, Local Gradient,
Multi-core, GPU.

I. INTRODUCTION

In this aeon of multimedia, images and videos have
become part and parcel of our lives. The need of the hour
is to design faster and better algorithms for producing
better quality images. The process of digital image
acquisition is fraught with many problems such as noise
and low sampling rate. Aliasing effects can be observed
due to low spatial resolution of the digital imaging
systems. Improving the density of CCD arrays is one
possible solution, but this is costly. As a cost effective
alternative software solution, image reconstruction has
been used over many years to improve the quality of the
images. Regression has proved to be an effective tool for
improving the quality of images and is being used widely
for image reconstruction[1]. Takeda et al.[2] have used
this for image restoration and enhancement and proposed
steering kernel regression for interpolation, denoising of
sampled data .

With the advent of GPUs, the performance of many
practical compute intensive applications are scaled to

∗student author

greater speeds. GPUs enable to satiate the hunger of
performance of the application in proportional to the
amount of the data parallelism involved in it. The algo-
rithm considered here is computationally intensive and
in-order to make it faster, we can exploit the inherent
data parallelism in the algorithm. Our contribution in
this paper is to make the algorithm computationally
efficient by implementing the most time consuming
steps on Graphical Processing Unit (GPU) and multi-
core platforms. The results of both the approaches are
compared.

The remainder of this paper is presented as follows.
Section II reviews the theory related to data adap-
tive steering kernel regression. Section III discusses
the methodology used to parallelize the algorithm and
issues related to performance optimizations. Section IV
presents the experimental results. Finally conclusion and
future work are presented in Section V.

II. DATA ADAPTIVE KERNEL REGRESSION

Regression is a process of finding the underlying sig-
nal in a given data where the original signal is corrupted
by noise. Many image regression techniques like edge-
directed interpolation [3], and moving least squares [4]
were proposed. Classical parametric regression methods
assume that there is a specific model for underlying
signal and estimate the parameters of this model. The
parametric estimation has been used in major image
processing techniques. The model generated out of the
estimated parameters is given as the best possible esti-
mate of the underlying signal.

In contrast, non parametric regression methods don’t
assume any underlying model, but depend on the data
itself to arrive at the original signal. Regression function
is the implicit model that has to be estimated. Takeda
et al. [2] introduced steering kernel regression for image
processing and reconstruction and have shown that it out-
performs existing regression techniques. The measured
data is given by yi = z(xi) + εi, i=1,...,P, where z(xi) is



a regression function acting on pixel coordinates, εis are
independent and identically distributed zero mean noise
values, P indicates total number of pixels. Assuming that
the regression function is smooth to a certain order N, the
objective functional estimation of z(x) can be deduced
(detailed derivation is given in [2]) by minimization of
the following functional:

min
{βn}

ΣP
i=1[yi − β0 − βT1 (xi − x)− βT2 (xi − x)2 −

. . . βTN (xi − x)N ]2
1

h
KH

(
xi − x
h

)
(1)

where βi is ith derivative of z(x) and h is global smooth-
ing parameter. KH(xi−x) is the kernel weight assigned
to the samples and is defined such that the nearby
samples are given higher weight than the farther ones.
The central notion of the steering kernel regression is
to estimate the local gradients. The gradient information
captures the features of the image. These in turn are used
to find the weights to be assigned to the neighboring
samples. Pixel near an edge will be influenced by the
pixels lying on the same side of the edge. With this
intuition in mind, the dominant orientation of the local
gradients are measured. The kernel is then effectively
steered locally based on this dominant orientation. An
overview of the algorithm is given below.

Adaptive Steering Kernel Regression

The Steering Kernel Regression Algorithm[5] consists
of the following steps :

1) Given an image, apply classic kernel regression
method to estimate the gradient of the image.

2) Apply singular value decomposition on the above
obtained local gradients to compute scaling, rota-
tion and elongation parameters. Determine steering
matrix using these parameters.

3) Steering Kernel regression is applied on the orig-
inal image to obtain new image gradients and the
reconstructed image.

4) Iteratively repeat steps 2 and 3 till the noise is
reduced in the image and a good quality output is
obtained.

Number of iterations is an important factor in determin-
ing the quality of the resulting image. This is discussed
in Section IV.

III. IMPLEMENTATION

This section presents the parallel implementation of
the adaptive steering kernel regression method. The serial

code was programmed in MATLAB and is available
at http://www.soe.ucsc.edu/∼htakeda/MATLABApp. The
code was profiled using MATLAB Profiling Tool and it
was observed that the steps 1 and 3 of steering kernel
regression are the most time consuming parts. On careful
analysis, we discovered that these steps have a lot of
scope for parallelism. The serial implementation of step
3 consists the following ideas:
(a) To all pixels, in each iteration running till the square

of the upscale factor, determine the feature matrix.
(b) For each pixel,

• Obtain the weight matrix using the neighboring
samples of covariance matrix.

• Compute equivalent kernel which involves in-
verse of a matrix resulting from the product of
the feature and weight matrices.

• Estimate the pixel values and gradient structure
values for the output image.

In Step 1, classic regression method computes feature
matrix, weight matrix and equivalent kernel. The most
time consuming operations involved in this method are
to compute local gradient structure values along the axes
directions and to estimate the target values.

Steps 1 and 3 of steering kernel regression involve
data level parallelism and CUDA is used to parallelize
these steps. We used MATLAB provided MEX interface
feature to integrate CUDA and Matlab. We shall now
discuss the parallel implementation of the step 3 :
• Copy the original image, covariance matrix, feature

matrix from the CPU host memory to GPU global
memory.

• Kernel is launched with the total number of threads
equaling the total number of pixels in the source
image.

• A thread is assigned to each pixel and it does
the above mentioned steps of determining weight
matrix and equivalent kernel.

• It contributes R2 pixels in the estimated output
image, where R is the upscaling factor.

Computing the steering matrix (step 2) is done on multi-
core for speed up of the whole process.

OPTIMIZATIONS: Since shared memory is on chip,
accesses to it are significantly faster than accesses to
global memory. Feature matrix is copied from host
memory to shared memory of GPU. Only one thread in
a block will get the data from global to shared memory.
Only feature matrix could fit in the shared memory due
to it’s space limitations of 48K. For the remaining data,
the global memory request for a warp is split into two



memory requests, one for each half-warp, which are
issued independently. GPU hardware can combine all
memory requests to a single memory transaction if the
threads in a warp access consecutive memory locations
[6]. Our model is designed in such a way that the
memory access pattern by threads is coalesced, thereby
improving performance and ensuring low latency.

The multi-core code is implemented using the Paral-
lel Computing Toolbox of MATLAB environment. The
performance comparison of these two implementations
is given in the following section.

IV. RESULTS

A. EXPERIMENTAL SETUP

For all experiments, the parallelized version of the
steering kernel regression was run on Tesla T20 based
“Fermi”GPU. The serial and multi-core implementations
of the same were run in MATLAB R2012a on a node
with Intel(R) Xeon(R) 2.13GHz processor and 24 GB
RAM. CUDA timers were employed, which have res-
olution upto milliseconds to time the CUDA kernels
and more importantly they are less subject to pertur-
bations due to other events like page faults, interrupt
from the disks. Also CudaEventRecord is asynchronous,
there is less of Heisenberg effect when timing is short,
exactly suitable to GPU-intensive operations as in these
applications. For the multi-core code, timers provided by
MATLAB were used.

B. EXPERIMENTS

Experiments and the performance results of GPU,
multi-core implementations on simulated and real data
are presented. These experiments were conducted on
diverse applications and attest the claims made in previ-
ous sections. In all experiments, we considered regularly
sampled data.
An important note to consider is the determination of
the maximum speed up achieved by an application.
Understanding the type of scaling that is applicable in
any application is vital in estimating the speed up. All
the applications that are mentioned here exhibit good
scaling. An instance of this phenomenon is shown in
Figure 1. One can observe that for a fixed problem size,
increase in the number of processing elements, the time
of execution decreases.

Quality Test: We performed the quality test for the
image by visual inspection and RMSE (root mean square
error) values obtained from all the implementations.
Figure 6 displays the results of the serial code and
CUDA when applied on a CT scan image with Gaussian

Fig. 1: Plot of execution time against number of processing
elements.

noise and standard deviation σ = 35. The RMSE
values of the images resulted from multi-core and GPU
implementations are 13.2, which is closer to serial result.
We observed that quality was maintained with out any
visually plausible differences.

For all the experiments, the initial estimates are given
by the classical kernel regression method. Different
experiments that were performed are:

1) Denoising Experiment: Well known Lena image of
512×512 size and a picture of a pirate with 1024×1024
size were consideration for testing. Controlled simulated
experiment was set up by adding white Gaussian noise
with standard deviation of σ = 25 to both the images.
The global smoothing parameter h was set 2.4. The

Fig. 2: RMSE(root mean square error) of the resulted image
with respect to original image against Number of iterations

choice of number of iterations was set after careful
analysis of the behavior of the application. The graph
in the Figure 2, indicates that RMSE (root mean square
error) values of the resulted image drop till a point and
then it raises. This point was observed to be 12 for
this application. In this way, a limit for the number
of iterations is deduced for all the mentioned images.
The RMSE values of the resulted images are 6.6426 and



9.2299.
Clearly, the dominance of the GPU performance over

multi-core can be evidently seen in Figure 3. The multi-
core code was run with 12 MATLAB workers and
as expected a near 10x performance is achieved for
image size 1024 × 1024. The slack is possibly due to
the communication overhead of the MATLAB worker
threads.

Fig. 3: Speedup factors against image sizes for the denoise
application.

Figure 7 shows the results of denoising experiment
when applied on a color image of John.F.Kennedy.

Fig. 4: Speedup factors against image sizes for the compres-
sion artifact removal.

2) Compression artifact removal: Pepper image was
considered for this experiment and compressed it by
MATLAB JPEG routine with a quality parameter 10 and
RMSE of 9.76. The number of iterations and h were set
to 10 and 2.4. RMSE values for single core version is
8.5765, multi-core version is 8.5759 and that of GPU
is 8.5762. The performance is shown in Figure 4. The
multi-core code has a average speed up factor of 6 over
serial implementation whereas GPU has speed up of 20.

Fig. 5: Speedup factors against image sizes for the upscaling.

3) Upscaling: We performed an upscale operation
on the lena image and on the pirate’s picture. The
performance is noted in the Figure 5. In this case, the
GPU performance is achieved to be significantly higher
than the multi-core. The arithmetic intensity is high for
this application as each thread needs to estimate more
number of pixels in the target image, precisely 4 (the
upsampling factor).

Kernel Timing Results

Table I presents the runtime measurements of the
kernels for single core, multi-core and GPU implemen-
tations for different image sizes. The timings given for
GPU code also include the data transfer time from host to
GPU memory and vice-versa. The GPU code maintains
the efficiency even with the increase in the image size.
The GPU version of classic kernel has achieved a factor
of 175x over the serial implementation. An improvement
factor of 75x was observed for steering kernel.

TABLE I: Kernel execution timings(in seconds)

Image size Regression method Single core multi-core GPU

512 x 512 classic kernel 11.765 1.765 0.067

512 x 512 steering kernel 105.140 18.200 1.470

1024 x 1024 classic kernel 47.741 6.930 0.270

1024 x 1024 steering kernel 427.701 102.234 5.819

V. CONCLUSIONS AND FUTURE WORK

Steering kernel regression is indeed an innovative
work in image reconstruction. This algorithm was suc-
cessfully parallelized on both multi-core, GPU plat-
forms using MATLAB and CUDA. We evaluated our
implementations for different applications with varying
parameters. From the observations, it is clearly evident



(a) (b) (c)

Fig. 6: (a) Noisy image (b) Serial Result (c) Parallel Result.

(a)

(b)

(c)

Fig. 7: (a) Noisy Image (b) Serial Result (c) Parallel Result.

that the time involved in computing steering kernel was
minimized. On an average, a speedup of 6 and 21 was
achieved on the multi-core and GPU.

A direction to the future work is to extend the parallel
implementation even to the videos where a plethora
of applications like deblurring, super-resolution use this

algorithm. All the image datasets considered here fit
within the limits of GPU memory. Computing Steering
Kernel regression on single GPU may not be scalable to
larger images as the on-board memory of GPU is a major
constraint. Thus, there is a possibility of using multiple
GPUs.

ACKNOWLEDGMENT

We would like to dedicate our efforts to our Divine
Founder Chancellor Bhagawan Sri Sathya Sai Baba,
without whom this work wouldn’t have been possible.
We would like to acknowledge Takeda et.al for making
the Kernel Regression Tool-box software available on-
line. This work was partially supported by nVIDIA,
Pune, grant under Professor partnership program and
DRDO grant under Extramural Research and Intellectual
Property rights.

REFERENCES

[1] M. Unser. Splines: A perfect fit for signal and image process-
ing. IEEE Signal Processing Magazine, 16(6):22–38, November
1999. IEEE Signal Processing Society’s 2000 magazine award.

[2] Hiroyuki Takeda, Student Member, Sina Farsiu, Peyman Milan-
far, and Senior Member. Kernel regression for image processing
and reconstruction. IEEE Transactions on Image Processing,
16:349–366, 2007.

[3] X. Li and M. T. Orchard. New edge-directed interpolation. IEEE
Trans., 10:1521–1527, 2001.

[4] N. K. Bose and N. A. Ahuja. Superresolution and noise filtering
using moving least squares. Trans. Img. Proc., 15(8):2239–2248,
August 2006.

[5] Peyman Milanfar, Hiroyuki Takeda, and Sina Farslu. Kernel
regression for image processing and reconstruction. patent, Aug
30, 2006.

[6] NVIDIA CUDA Programming Guide. [Online], Avail-
able at:http://developer.download.nvidia.com/, [Accessed Aug
15,2012].


